Antimicrobial resistance (AMR) is a growing global health crisis because of microbes, such as bacteria, becoming resistant to antibiotics. A leading factor in this rise is the improper use and disposal of antibiotics in the environment. Effluents from wastewater treatment plants often contain various antibiotics including trimethoprim (TMP), which can harm ecosystems by disrupting microbial communities essential for nutrient cycling. In addition to contributing to AMR, TMP poses various health risks to humans through indirect exposure.

Professor Tae Yoon Lee and Dr. Natarajan Karikalan of Chungnam National University, Korea, have made a pioneering advancement in EC detection methods, that shows promise to revolutionize on-site testing for TMP in contaminated wastewater. They developed a disposable microfluidic lab-on-a-chip (LOC) EC sensor, μTMP-chip, designed for real-time TMP detection. The researchers designed the disposable chip by combining a special electrode made with lanthanum hydroxide and selenite, with a polyimide (PI) filter in a microfluidic channel. The analyses showed that the addition of selenite improved the electrode’s ability to detect chemicals by allowing better charge flow.

The researchers believe that their innovative lab-on-a-chip design has the potential to improve the feasibility of on-site, real-time tracking of environmental contaminants leading to improved conservation of ecosystems and human health.

Source: Phys.org

 

The post Researchers unveil chip for quick antibiotic monitoring in water appeared first on Vastuullisuusuutiset.fi.